i -
. il

[V T

S PR P

NACA TN 4311 8930-{

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 4311

PRANDTL NUMBER EFFECTS ON UNSTEADY FORCED -
CONVECTION HEAT TRANSFER
By E. M, Sparrow and J. L, Gregg

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
June 1958

AEMOU

9022900

IR

WN ‘84V) AHVHEIT HO3L

S | S R
roop
1 e

‘ !
Cl

i



4868

CP=-1

TECH LIBRARY KAFB, NM

T

NATIONAL, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4311

PRANDTT. NUMBER EFFECTS ON UNSTEADY FORCED-
CONVECTION HEAT TRANSFER

By E. M. Sparrow and J. L. Gregg

SUMMARY

An analysis 1s made for laminar forced-convection heat transfer on
a flat plate with unsteady surface temperature. The deviation of the
instantaneous heat-transfer rate from the quasi-steady value is computed.
Results are obtained for Prandtl numbers in the range 0.0l to 10. The
deviations from quasi-steady heat transfer increase markedly with in-
creasing Prandtl number. The findings reported here should apply approx-
imately in the entrance region of ducts and should salso provide an upper
bound on devistions from turbulent gquasi-steady heat transfer.

INTRODUCTION

It is often necessary to compute the forced-convection heat trans-
fer from s surface vwhose temperature is changing with time. This problem
is much simplified when it is supposed that the boundary layer passes
through a succession of instantaneous steady states. Such a boundary
layer 1is called quasi-steady. Under this assumptlon, the heat transfer
is computed by instentaneous application of steady-state heat-transfer
relations. The quasi-steady supposition is also invoked in heat-transfer
experiments employing the transient technique, where the instantaneous
measurements are used to determine steady-state coefficients.

In reality, there is always a difference between the actual instan-
taneous heat transfer and the quasi-steady value. The extent of the
deviation depends upon the response characteristics of the boundary
layer, as well a8 on the rapidity of the changes in surface temperature.

The aim of this analysis is to find the first- and second-order de-
viations of the actual instantaneous heat transfer from the quasi-steady
value and to learn how these deviations depend upon the Prandtl number.
The final results provide a repid and accurate quantitative means for
determining when a given set of surface temperature and free-stream ve~
loclity data lead to essentially quasi-steady heat transfer.
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The system chosen for study is & flat plate alined parellel to a
steady laminar flow as pictured in the following sketch:

¥y T
— t,
- U s Teo u
— e
NT(t)

The surface temperature T, 1s spatially uniform but is permitted to

take on arbitrary, but continuously differientable, variations with time.
The free~stream temperature T, 1is taken to be constant. Results are
gliven here for fluids having Prandtl. numbers between 0.0l and 10. This
Investigation constitutes an extension of previous work for Pr = 0.72
(air and other gases) reported in reference 1. Those primarily inter-
ested in results are invited to pass over the sectlon on ANALYSIS.

Readers interested in non-quasi-steady boundary layers are referred
to the work of Moore and Ostrach (refs. 2 to 5), who studled the effects
asgociated with time variations in free-stream velocity.

SYMBOLS
Cp specific heat at constant pressure
P Blasius velocity funection —
h local hest-transfer coefficient, q/AT
k thermal conductivity
Mg free-stream Mach number
Pr Prandtl number, cpu/k = v/a
aq local heat-transfer rate per unit area
R recovery factor
T static temperature
AT temperature difference; Ty - Tg,, with frictional heating,

Tw ~ Te without frictional heating

Ty Ty time derivatives of wall temperature

8987%
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t time
Ue free~stream velocity
u velocity component in x-direction
v velocity component in y-direction
Xx coordinate measuring distance along plate from leading edge
y R
Y transformed coordinate, — dy
0 Pe
N coordinate measuring distance normal to plate
a thermal diffusivity, k/pcP
x \° afT,/at™
Bn expansion parameters, o -,f,w_—T.'
T ratio of specific heats
v p | Us
| Blasius similarity varigble, s\
2] dimensionless temperature, (T - T)/(Ty - Tu)

81,65 functions of 1

18 absolute viscosity
v kinematic viscosity
P density

T time

% function of 1

¥ stream function
Subscripts:

aw adiasbatic wall

inst instantaneous
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gs quasi-steady
W wall
o free stream

ANATYSTS
Governing Eguations
The analysis begins with the equations expressing conservation of

mass, momentum, and energy for unsteady laminar boundary-layer flow over
a flat plate:

%(pu)+%(pﬂ+§%=0 (1)
du du ou o du
DCSE + u Sx + v §§)==:§;61569 (2)
(3t 3T T\ _ 3 f T du\?
pcp(§§ tu s + v 8;) 5;(% 55) + u(5§) | (3)
The boundary conditions appropriate to the problem are L
u= 0
U =+ U
v=20 y=0 Yy o (4)
T= T,
T = T,(t)

To simplify the treatment, the variation of fluld properties in
ligquids will be neglected, while for gases it will be supposed that the
properties may be approximated by pu = constant, pk = constant, Cp =
constant. Fluld-~property variations are not expected to have a declsive
effect on the final results (which are expressed in the form of ratios).

The equation for conservatlon of mass 1s satisfled by a stream func-

tion ¥ defined as follows (ref. 2, eq. (5)):

pway pmaY d Yp
“E TSy "“?&:*5@[ e ™ (2)
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Then, by replacing u and v in favor of ¥ and introducing the fol-
lowing new variables

T - Ty v
= oo X = x, Y=/ £ ay, t=1% (5)
W @® O Pe

equations (2) and (3) may be rephrased as

Yot B %y - Ty¥oy = Volory (2a)

Op + 6 ¥ T‘“’ + Y0 - Lo = %;{}H + T”“/k" (¥ )] (32)

W'

For brevity, the derivatives with respect to X, ¥, and T have been
denoted by subscripts. In terms of the new variables, the boundasry con-

ditions (4) become

¥o=0

¥ Yi-» Um
6-+0

=1

Since the transformation has removed all thermal effects from the momen-
tum equation (2a), it is clear that ¥y, = 0.

Solutions

As has already been noted, the object of this analysis is to in-~
vestigate the deviations of the actual instantaneous heat transfer from
the quasi-steady value. With this in mind, it 1s natural to seek a solu-
tlon for the temperature distribution in the form of a series expansion
about the quasi-steady state. In reference 1, the following quantities
were introduced to serve as expansion parameters for the serles solution:

T 2f T
X(__"w X W
P T Ua\T, - Lo/’ BZ:(U,,)TW-T,,""- (6)

Physically, these parameters represent the ratio of the time required
for changes in surface temperature to diffuse across the boundary layerl

IThe time required for changes to diffuse across a layer of thick~
ness A 1is proportional to AZ/a; while the thermal boundary-layer thick-
ness A 1is proportional to X0/Uw . IHence, the diffusion time is pro-

portional to x/U,.
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to a time that is characteristic of the rapidity of the surface temper-
ature changes. Thus, the B, serve as a measure of the promptness with
which the boundary layer responds to impressed variations of surface
temperature. - - ;

Using the PBp, the series solution for the dimensionless tempera-
ture 6 1is written as
ya
e = eo('ﬁ) + Blel(n) + 5262(71) + .. 0 F ch(Tw T #(n) (7)

where 7 1is the well-known Blasius similarity variable given by

e

The functions 6 and % are assoclated with the quasi-steady tempera-
ture distribution. When the By are small (corresponding to prompt
response to impressed changes), the state is essentially quasi-steady.

The stream function Y 1s written in-.terms of the Blasius variable
F eas

¥ = /v 0_X F(n) (9)

When the expressions for 6 and Y are substituted back into equa-
tions (2a) and (3a), and after terms sre grouped according to whether
they are multiplied by By, By, . . ., the following set of ordinary dif-
ferential equatlions results:

F™4 FF" = 0 F(0) = F'(0) = 0, F'(=) = 2 (10)
6o + PrFe} = 0 80(0) = 1, 8g(=) = O (11)

6 + Pr(FGJ'_ - 2F'6; - 490) = 0 61(0) = 81(w) = 0 (12)
0% + Pr(FBé - 4F'6, - 491) =0 05(0) = 05(=) = 0 (13)
" + Pr[F@‘ + % (F")z] =0 #(0) = &(e) = 0 (14)

A solution of equation (10) was first obtained by Blasius in 1908,
but it was necessary to re-solve this equation to greater accuracy for
present purposes. Numericel solutions to equations (11), (12), and (13)
have been carried out as part of this investigation on an IBM 650
Magnetic Drum Data-Processing Machine for Prandtl numbers of 0.01, 0.72,
1.0, and 10. The function % 1is associated with the aerodynamic heating.

11
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For laminar conditions, this effect of viscous dissipation is usually of
importance only for high-speed gas flows. Solutions of the aerodynamic-
heating problem for the Prandtl number range of gases are available in
the literature (e.g., ref. 6).

These numerical results will be utlilized in the heat-transfer cal-
culations that follow.
HEAT-TRANSFER RESULTS

The instantaneous local heat flux at the plate surface Qingt DaY
be calculated by applying Fourier's law:

oT
2T (k ?Y)y:o

After introducing the series expansion of (7) and taking account of the
transformed variables of equations (5) and (8), the expression for g
becomes : .

Gingt = = 5 N5 (Ty - T){04(0) + B,61(0) + B04(0) + . « . +
ug
W G T (0)

(15)

where 66(0), Gi(o), . . . are abbreviations for (deo/an)n=o,

For liquids, the effects of aerodynamic heating will be neglected,
and consequently the last term on the right side of the equation is omit-
ted. For gases, it is convenient to introduce the adiabatic wall tem-
perature Tgy by the relation

_ U2 .
Taw=T,E+RLL;—1)-M§]=Tm1+R-ZC—T'- (16)
Pw

where R, the recovery factor, has been given in reference 1 as

R = --g’: 8 S -(162)
0
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Msking use of equations (16a), (16), and (6}, it 1s easy to show that
the final expression for qi,g¢ has the same form for liquides and for

gases, namely,
] T i 2
k @ Wi X Wi X
= - = A= AT} (0) + Z{2}181(0) + Zl=—] ©0'(0) + . . .
dinst = 7 3 va 0 AT(U..) 1(0) AT(U.,) 20

where

(17)

AT = T, - Tgy for gases
AT = T, - Te for liquids

The quasi~steady heat transfer dgs _13 given by

k ;\/ﬁ ,
%5 = = 7 5% AT 94(0) (18)

The important relation between the instantaneous and the quasi-
steady heat transfer is then found by combining equations (17) and (18):

. . 1
Unst o, x| 7w o100, Tu (= 92(0) + (19)
e U |aT \Bi(0y T ar \U./\egloy) T

The quantities 66(0), Gi(o), and 8!(0) have been found as part of the

solution of equations (11), (12), and (13) and are listed in table I.
For convenience, the ratios ei(o)/eé(o) and eé(o)/eé(o) are plotted in

figure 1 as a function of Prandtl number. It is seen from equation (19)
that the deviations from quasi-steady heat transfer depend directly on
the magnitudes of these ratios. Figure 1 shows that both ratlos in-
crease markedly wlth Prandtl number, demonstrating, for example, that
liquid metals (Pr = 0.01) are less likely to experience deviations from
quasi-steady heat transfer than is water (Pr = 5). This trend might have
been intultively expected on physical grounds as a consequence of the
relatively high thermal diffusivity of liquid metals.

As alternative form of the results may be obtained by introducing
heat-transfer coefficients as follows:

_ Qinst

hinst T AT (20)

as

zty

Qao%
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Then, equation (19) may be rephrased as

bip t X Tw 9'(0) Ew eé(o)
g () @) ) | @

Equation {21) is in a form useful for interpretation of heat-transfer
coefficients obtalined under transient conditions.

To further facilitate calculations, a plot of the quasi-steady heat-
transfer relation (eq. (18)) is presented in figure 2.

Criterion for Quasi-Steady Heat Transfer

From the series nature of the solution, it is expected that equa-
tion (19) would be most accurate for small deviations of qinst/qqs from
unity. This suggests that this equation can serve as an acecurate and
rapid means for checking whether a given situation may be treated as
quasi-steady. When the free-stream velocity and surface tempersture data
of a particular situation lead to qinst/qqs = 1, then that situation can

be taken as quasi-steady for heat-transfer purposes.

In a great many forced-convectlon applications, the quotient x/U-
(in seconds) will be a small number. As & consequence, the second term
in the brackets of equation (19) will of‘ten be very small compared with
the first term. Under these circumstances, it is possible to esteblish
a simple criterion for determining when heat transfer from a surface with
time-dependent temperature can be computed with sufficient accuracy from
quasi-steady relations. Suppose that it 1s decided that an accuracy of
5 percent is sufficient for many applications. Then, the upper curve of
figure 3 distinguishes the conditions under which deviations from the
quasi-steady state may be ignored in the computation of local heat trans-
fer. Alternatively, if an accuracy of 2 percent is required, the lower
curve of figure 3 gives the conditions under which quasi-steady relations
are adequate. As a simple exemple, suppose that water (Pr = 5) is flow-
ing at 50 feet per second over a flat plate. If Ty =~ T, = 100° F and
x = 1 foot, then the departures from the quasi-steady state will have
negligible effect (52 percent) on the local heat transfer when the rate
of change of surface temperature does not exceed 23° F per second at
x = 1 foot.

CONCLUDING REMARKS

Although the analysis given here is Ffor laminar flow over a flat
plate, the findings may have a wider utility. Since the response of a
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turbulent flow should be more rapld than that of laminar flow, the pres-
ent results should glve an upper bound on the deviations from turbulent
quasi-steady heat transfer. Further, it 1s expected that the results
reported here will apply approximetely in the entrance region of ducts.

It 1s felt that the final results should not be strongly sensitive
to fluid-property variations, although caution should be exercised when
fluids with unusual property variations are involved (e.g., near the
critical point).

Lewis Flight Propulsion Leboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, March 28, 1958
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TABLE T.

-~ FUNCTIONS NEEDED IN HEAT-

TRANSFER COMPUTATIONS

Pr | 04(0) | &4(0) | e4(0) | e;(0) | ei(0)
§;70) | 8(0)
0.01 |-0.1032 | -0.1169 | 0.02034 | 1.133 | -0.1971
.72 | -.5913| -1.416 | .4739 | 2.395 | -.8015
1.0 | -.6641| ~1.751 | .6453 | 2.637 | -.9717
10 -1.456 | -7.993 |6.140 | 5.489 | -4.216
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Figure 1. - Functions peeded for computing heat traosfer in equation (19).
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